Model uncertainty QUANTIFICATION IN PRESENCE OF MISSING DATA

O'BAyEs 2022

María Eugenia Castellanos ${ }^{1}$, Stefano Cabras ${ }^{2}$, Anabel Forte ${ }^{3}$, Gonzalo García-Donato ${ }^{4}$ \& Alicia Quirós ${ }^{5}$

${ }^{1}$ Universidad Rey Juan Carlos
${ }^{2}$ Universidad Carlos III de Madrid
${ }^{3}$ Universidad de Valencia
${ }^{4}$ Universidad Castilla-La Mancha
${ }^{5}$ Universidad de León

■ Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.

■ Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.
■ Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$,

- Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$,

■ Several competing regression models (indexed by $\gamma \in \Gamma$),

$$
\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)
$$

■ Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.
■ Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$,

- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$
\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)
$$

- Only \boldsymbol{z}_{i} with $i \in \boldsymbol{i}^{\text {obs }}=\left\{i_{1}, \ldots, i_{m}\right\}$ are fully observed (first m components) due to reasons independent of f_{γ} (Missing At Random scenario)

■ Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.
■ Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$,

- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$
\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)
$$

- Only \boldsymbol{z}_{i} with $i \in \boldsymbol{i}^{\text {obs }}=\left\{i_{1}, \ldots, i_{m}\right\}$ are fully observed (first m components) due to reasons independent of f_{γ} (Missing At Random scenario)
- $D^{o b s}$ denotes all observed components.

■ Consider a random sample $\boldsymbol{z}_{i}=\left(y_{i}, x_{1, i}, \ldots, x_{p, i}\right), i=1, \ldots n$.

- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$,

■ Several competing regression models (indexed by $\gamma \in \Gamma$),

$$
\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)
$$

- Only \boldsymbol{z}_{i} with $i \in \boldsymbol{i}^{\text {obs }}=\left\{i_{1}, \ldots, i_{m}\right\}$ are fully observed (first m components) due to reasons independent of f_{γ} (Missing At Random scenario)
- $D^{\text {obs }}$ denotes all observed components.

In this context...

- How to make model selection?
- How to measure model uncertainty: different models affected by a different set of missing data?
- From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;
- From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;
- Bad approaches: they sacrifice useful information producing bias results, except perhaps for particular cases as Missing Completely At Random (MCAR).
- From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;
- Bad approaches: they sacrifice useful information producing bias results, except perhaps for particular cases as Missing Completely At Random (MCAR).
- Within the multiple imputation (MI) approach, proposed by Rubin (1987), what we call MI world, traditional non-Bayesian variable selection tools are difficult to be applied.
- MI world \rightsquigarrow apply statistical techniques to MI data-sets, there are two proposals in literature:

[^0]- MI world \rightsquigarrow apply statistical techniques to MI data-sets, there are two proposals in literature:
- The Biometrics paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.

[^1]- MI world \rightsquigarrow apply statistical techniques to MI data-sets, there are two proposals in literature:
- The Biometrics paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
- Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.

[^2]- MI world \rightsquigarrow apply statistical techniques to MI data-sets, there are two proposals in literature:
- The Biometrics paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
- Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.
- A recent paper by Hoijtink, Gu, Mulder and Rosseel, 2019, discusses how to compute Bayes Factors (BFs) doing MI for hypothesis testing in Psychology. ${ }^{\dagger}$

[^3]- MI world \rightsquigarrow apply statistical techniques to MI data-sets, there are two proposals in literature:
- The Biometrics paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
- Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.
- A recent paper by Hoijtink, Gu, Mulder and Rosseel, 2019, discusses how to compute Bayes Factors (BFs) doing MI for hypothesis testing in Psychology. ${ }^{\dagger}$
- To average BFs approximating marginal distributions from Gibbs output over the imputed data sets.

[^4]- Revisit all concepts that appear in model selection/model uncertainty obtaining their formulation in presence of missing data;
- Revisit all concepts that appear in model selection/model uncertainty obtaining their formulation in presence of missing data;
- The basic ingredient for model uncertainty quantification (MUQ) is the predictive density in the observed data,

$$
m\left(D^{o b s}\right)=\int f\left(D^{o b s} \mid \boldsymbol{\theta}\right) d \Pi(\boldsymbol{\theta})=\int f\left(D^{o b s}, D^{n a} \mid \boldsymbol{\theta}\right) d D^{n a} \pi(\boldsymbol{\theta}) d \boldsymbol{\theta}
$$

where $D^{n a}$ denotes the missing components in \boldsymbol{z}_{i}, with $i \in m+1, m+2, \ldots, n$. ($D^{\text {obs }}$ denotes all the components of \boldsymbol{z} observed).

1 Motivation about model selection with missing data

2 Regression models. Full observed data
3 Regression models. Missing data
4 Computing marginals with missing data

- Prior distributions
- Bayes Factors
- Posterior probabilities

5 Simulated example
6 Comments and remarks

- The entertained regression models may differ in a number of ways:

1. Set of covariates needed to explain Y or,
2. Density assumed for the errors in linear models.

- The entertained regression models may differ in a number of ways:

1. Set of covariates needed to explain Y or,
2. Density assumed for the errors in linear models.

- Notation:
- θ_{0} parameters appearing in all competing models;
- $\boldsymbol{\theta}_{\gamma}$ specific parameter in \mathcal{M}_{γ};
- A more precise labelling for the parameters of M_{γ} is $\left(\left(\boldsymbol{\theta}_{0}\right)_{\gamma}, \boldsymbol{\theta}_{\gamma}\right)$, we abuse notation considering $\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)$.

■ In designed experiments, the marginal distribution is obtained "conditional" on the values of covariates:

$$
m_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)=\int f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma}
$$

- Usual prior distributions over $\boldsymbol{\theta}_{\gamma}$: Zellner-Siow priors, robust priors, hyper-g-priors, etc, use a conditional variance that depends on $\boldsymbol{x}_{i}, i=1, \ldots, p$.
- This is legitimate as the \boldsymbol{x}_{i} are fixed covariates designed for the experiment.
- Covariates are random: compare models in the basis of how they predict all observed values.
- Introducing the idea of competing models as joint statistical models:

$$
\mathcal{M}_{\gamma}: \boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right)
$$

- The marginal density:

$$
\begin{aligned}
& m_{\gamma}\left(\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)= \\
& \int f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma} d \boldsymbol{\nu}
\end{aligned}
$$

- Assuming prior independence: $\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi(\boldsymbol{\nu})$, then

$$
\begin{aligned}
& m_{\gamma}\left(\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)= \\
& \underbrace{\int f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) \pi(\boldsymbol{\nu}) d \boldsymbol{\nu}}_{m\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)} \times \int f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma}
\end{aligned}
$$

- First factor is independent of the model and would cancel in the BF.
- The distribution $f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right)$ is negligible \rightarrow identical results that in the fixed covariates case.
- Justification of the no discussion about the fixed or random covariates: it does not affect results...

■ Assuming prior independence: $\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi(\boldsymbol{\nu})$, then

$$
\begin{aligned}
& m_{\gamma}\left(\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)= \\
& \underbrace{\int f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) \pi(\boldsymbol{\nu}) d \boldsymbol{\nu}}_{m\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)} \times \int f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma} .
\end{aligned}
$$

- First factor is independent of the model and would cancel in the BF.
- The distribution $f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right)$ is negligible \rightarrow identical results that in the fixed covariates case.
- Justification of the no discussion about the fixed or random covariates: it does not affect results...

First message

But... $\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)$ cannot depend on $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$, invalidating the most popular priors: g-prior, Zellner-Ziow prior, hyper-g prior, robust prior, etc.

- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Tilde symbol used to represent a realization of a random or vector variable. $\tilde{\boldsymbol{y}}$ is a realization of the random vector \boldsymbol{y}.
- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Tilde symbol used to represent a realization of a random or vector variable. $\tilde{\boldsymbol{y}}$ is a realization of the random vector \boldsymbol{y}.
- Consider a $n \times p$ binary matrix $M=\left(m_{i j}\right)$,
with $m_{i j}=1$ when $x_{i j}$ is missing.
- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Tilde symbol used to represent a realization of a random or vector variable. $\tilde{\boldsymbol{y}}$ is a realization of the random vector \boldsymbol{y}.
- Consider a $n \times p$ binary matrix $M=\left(m_{i j}\right)$,

$$
\text { with } m_{i j}=1 \text { when } x_{i j} \text { is missing. }
$$

- M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

$$
\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, M \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) f\left(M \mid \boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\psi}\right)
$$

- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Tilde symbol used to represent a realization of a random or vector variable. $\tilde{\boldsymbol{y}}$ is a realization of the random vector \boldsymbol{y}.
- Consider a $n \times p$ binary matrix $M=\left(m_{i j}\right)$,

$$
\text { with } m_{i j}=1 \text { when } x_{i j} \text { is missing. }
$$

- M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

$$
\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, M \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) f\left(M \mid \boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\psi}\right)
$$

- Missingness \rightarrow only certain values of the covariates are observed: $\widetilde{\boldsymbol{x}}_{(0)}$, i.e. $\widetilde{\boldsymbol{x}}_{(0)}=\left\{\widetilde{x}_{i j}: \widetilde{m}_{i j}=0\right\}$.
- Missing values only in covariates. Not missing values in \boldsymbol{y}.
- Tilde symbol used to represent a realization of a random or vector variable. $\tilde{\boldsymbol{y}}$ is a realization of the random vector \boldsymbol{y}.
■ Consider a $n \times p$ binary matrix $M=\left(m_{i j}\right)$,

$$
\text { with } m_{i j}=1 \text { when } x_{i j} \text { is missing. }
$$

- M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

$$
\boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, M \sim f_{\gamma}\left(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}\right) f\left(M \mid \boldsymbol{y}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}, \boldsymbol{\psi}\right)
$$

- Missingness \rightarrow only certain values of the covariates are observed: $\widetilde{\boldsymbol{x}}_{(0)}$, i.e. $\widetilde{\boldsymbol{x}}_{(0)}=\left\{\widetilde{x}_{i j}: \widetilde{m}_{i j}=0\right\}$.
- Rest of components of covariates are random, denoted as $\boldsymbol{x}_{(1)}$.
- Different mechanisms assumed to represent the missingness structure (described in Little and Rubin, 2020).
■ Consider Missing at Random, (MAR) mechanism, the weakest condition to avoid specifying the probability distribution of M;
- Missing data are MAR for an observed data $\left(\widetilde{M}, \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)$ if

$$
f\left(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\psi}\right)=f\left(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}^{\star}, \boldsymbol{\psi}\right), \text { for any } \boldsymbol{x}_{(1)} \neq \boldsymbol{x}_{(1)}^{\star}
$$

Abbreviated: $f\left(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\psi}\right)$ does not depend on $\boldsymbol{x}_{(1)}$.

- Join prior predictive marginal:

$$
\begin{aligned}
& m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \widetilde{M}\right)=\int m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \widetilde{M}\right) d \boldsymbol{x}_{(1)} \\
= & \int f_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \widetilde{M} \mid \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}, \boldsymbol{\psi}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}, \boldsymbol{\psi}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma} d \boldsymbol{\nu} d \boldsymbol{\psi} d \boldsymbol{x}_{(1)} \\
= & \int\left[f_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}\right) f\left(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\psi}\right)\right. \\
\times & \left.\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}, \boldsymbol{\psi}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma} d \boldsymbol{\nu} d \boldsymbol{\psi} d \boldsymbol{x}_{(1)}\right]
\end{aligned}
$$

■ Using the MAR assumption and considering independence between parameters governing the missing mechanism and the rest: $\pi_{\gamma}\left(\boldsymbol{\psi} \mid \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi(\boldsymbol{\psi})$ (we call these MU-ignorable condition).

$$
m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \widetilde{M}\right)=m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right) \int f\left(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\psi}\right) \pi(\boldsymbol{\psi}) d \boldsymbol{\psi}
$$

where

$$
m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)=\int f_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) f\left(\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right) d \boldsymbol{\theta}_{0} d \boldsymbol{\theta}_{\gamma} d \boldsymbol{\nu} d \boldsymbol{x}_{(1)}
$$

- In the above equation (in pink), the second factor does not depend on $\gamma \rightarrow$ cancel out in the BFs.
- Under the MU-ignorable condition, and considering conditional prior independence: $\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu})$.
- The marginal prior of interest is:

$$
\begin{aligned}
m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right) & =\int f_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right) d \boldsymbol{x}_{(1)} d\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right) \\
& =\int[\underbrace{\int f_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right) d\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}\right)}_{\mathrm{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, x_{(1)}, \boldsymbol{\nu}\right)} \\
& \left.\times f\left(\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu}) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}\right] \\
& =\int \mathfrak{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) f\left(\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu}) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu} \\
& =\int \mathfrak{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}\right) f\left(\widetilde{\boldsymbol{x}}_{(0)} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu}) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu} \\
& =m_{\gamma}\left(\widetilde{x}_{(0)}\right) \int \mathfrak{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}\right) \pi_{\gamma}\left(\nu \mid \widetilde{x}_{(0)}\right) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}
\end{aligned}
$$

If $\mathfrak{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right)$ can be easily evaluated, then $m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)$ can be approximated by simulation:

For $j=1, \ldots, N$:
$1: \operatorname{Draw}^{\boldsymbol{\nu}}{ }^{(j)} \sim \pi_{\gamma}\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right)$,
$2: \quad \operatorname{draw}\left(\boldsymbol{x}_{(1)}\right)^{(j)} \sim f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}^{(j)}\right)$,
3 : compute $\mathfrak{m}^{(j)}=\mathfrak{m}_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\left(\boldsymbol{x}_{(1)}\right)^{(j)}, \boldsymbol{\nu}^{(j)}\right)$,

- Approximate

$$
\left.m_{\gamma}{\widehat{\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right.}}\right)=N^{-1} \sum \mathfrak{m}^{(j)}
$$

- Steps 1 and 2 are doing with an augmented Gibbs scheme.

Example

Example (Simple linear regression)

- Our data contains observations from three variables $\left(y, x_{1}, x_{2}\right) \in \mathbb{R}^{3}$.
- Two competing regression models, explaining Y :

$$
\begin{aligned}
H_{0} & : f_{0}\left(y \mid x_{1}, x_{2}, \beta_{0}, \sigma\right)=N\left(y \mid \beta_{0}, \sigma^{2}\right) \\
H_{1} & : f_{1}\left(y \mid x_{1}, x_{2}, \beta_{0}, \beta, \sigma\right)=N\left(y \mid \beta_{0}+\beta_{1} x_{1}, \sigma^{2}\right)
\end{aligned}
$$

- $\Gamma=\{0,1\}$, variable x_{2} is is not relevant for this model uncertainty problem, but it will be for making imputation.
- Here $\boldsymbol{\theta}_{0}=\left(\beta_{0}, \sigma\right)$ are common parameters for both regression models, while $\boldsymbol{\theta}_{\gamma}=\beta_{1}$ is specific to \mathcal{M}_{1}.

Prior distributions considered

- Objective or non-informative setting.
- Adaptation of well-known practices in the model uncertainty literature to the missing data problems.
- Prior for \mathcal{M}_{γ} :

$$
\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu})=\pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}, \boldsymbol{\theta}_{0}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu})
$$

Prior distributions considered

- Objective or non-informative setting.
- Adaptation of well-known practices in the model uncertainty literature to the missing data problems.
- Prior for \mathcal{M}_{γ} :

$$
\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}\right)=\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu})=\pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}, \boldsymbol{\theta}_{0}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{0} \mid \boldsymbol{\nu}\right) \pi_{\gamma}(\boldsymbol{\nu})
$$

Definition (Prior scheme recommended)

$$
\begin{equation*}
\pi_{\gamma}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right)=\pi\left(\boldsymbol{\theta}_{0}\right) \pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}, \boldsymbol{\theta}_{0}\right), \pi_{\gamma}(\boldsymbol{\nu})=\pi(\boldsymbol{\nu}) \tag{1}
\end{equation*}
$$

where $\pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}, \boldsymbol{\theta}_{0}\right)$ is proper and depends on $\boldsymbol{\nu}$ and $\pi(\boldsymbol{\nu})$ and/or $\pi\left(\boldsymbol{\theta}_{0}\right)$ are potentially improper.
For models that only have common parameters, (1) should be understood as:

$$
\pi_{\gamma}\left(\boldsymbol{\theta}_{0} \mid \boldsymbol{\nu}\right)=\pi\left(\boldsymbol{\theta}_{0}\right), \pi_{\gamma}(\boldsymbol{\nu})=\pi(\boldsymbol{\nu})
$$

Prior distributions considered (cont.)

- For the priors defined above, $m_{\gamma}\left(\widetilde{\boldsymbol{x}}_{(0)}\right)$ is independent of γ and

$$
m_{\gamma}\left(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}\right)=m\left(\widetilde{\boldsymbol{x}}_{(0)}\right) \int \mathfrak{m}_{\gamma}\left(\boldsymbol{y} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}\right) \pi\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}
$$

$\rightarrow m\left(\widetilde{x}_{(0)}\right)$ cancels in the BFs. as it appears in all models.

- For the priors defined above, $m_{\gamma}\left(\widetilde{\boldsymbol{x}}_{(0)}\right)$ is independent of γ and

$$
m_{\gamma}\left(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}\right)=m\left(\widetilde{\boldsymbol{x}}_{(0)}\right) \int \mathfrak{m}_{\gamma}\left(\boldsymbol{y} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}\right) \pi\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}
$$

$\rightarrow m\left(\widetilde{x}_{(0)}\right)$ cancels in the BFs. as it appears in all models.

About $\pi_{\gamma}(\boldsymbol{\nu})$

- Contributes to $m_{\gamma}\left(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}\right)$ through $\pi_{\gamma}\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right)$, under weak conditions this is a proper distribution.
- It can be used an improper prior.
- The meaning of $\boldsymbol{\nu}$ does not change with $M_{\gamma}, f(\boldsymbol{x} \mid \boldsymbol{\nu})$ is independent of $\gamma \rightarrow$ same $\pi_{\gamma}(\boldsymbol{\nu})$ for every model \mathcal{M}_{γ}.

Example (Simple linear regression (cont.))

- Consider $X=X_{1}$ a continuous regressor and assume $X \stackrel{\text { iid }}{\sim} N\left(\mu_{x}, \sigma_{x}^{2}\right)$, so $\boldsymbol{\nu}=\left(\mu_{x}, \sigma_{x}\right)$.
- The priors to assign can be expressed: $\pi_{0}\left(\beta_{0}, \sigma, \nu\right)=\pi_{0}\left(\beta_{0}, \sigma \mid \mu_{x}, \sigma_{x}\right) \pi_{0}\left(\mu_{x}, \sigma_{x}\right)$, and

$$
\pi_{1}\left(\beta_{1}, \beta_{0}, \sigma, \nu\right)=\pi_{1}\left(\beta_{0}, \sigma \mid \mu_{x}, \sigma_{x}\right) \pi_{1}\left(\beta_{1} \mid \beta_{0}, \sigma, \mu_{x}, \sigma_{x}\right) \pi_{1}\left(\mu_{x}, \sigma_{x}\right)
$$

- The reference prior for X model is $\pi\left(\mu_{x}, \sigma_{x}\right)=\sigma_{x}^{-1}$, we consider: $\pi_{0}\left(\mu_{x}, \sigma_{x}\right)=\pi_{1}\left(\mu_{x}, \sigma_{x}\right)=\sigma_{x}^{-1}$.
- Consider a non-informative prior as $\boldsymbol{\theta}_{0}$ are common parameters.
- Reasonable when $\boldsymbol{\theta}_{0}$ have a similar interpretation in all models, in this case we should use an objective estimation prior.

Example (Simple linear regression (cont.))

Common parameters are: $\boldsymbol{\theta}_{0}=\left(\beta_{0}, \sigma\right)$.

- Under $\mathcal{M}_{0}, \beta_{0}$ represents the mean of all y, under M_{1} it is the mean of $y \mid x=0$. Since x has mean μ_{x} the meaning of both β_{0} can be very different.
- To achieve similar meaning, \rightarrow a reparametrization under $\mathcal{M}_{1}: \beta_{0}^{*}=\beta_{0}+\beta \mu_{x}$ then $y_{i} \mid x_{i} \sim N\left(\beta_{0}^{*}+\beta\left(x_{i}-\mu_{x}\right), \sigma^{2}\right)$.
- Now the prior over common parameters is:

$$
\pi_{0}\left(\beta_{0}, \sigma \mid \boldsymbol{\nu}\right)=\sigma^{-1} \text { and } \pi_{1}^{*}\left(\beta_{0}^{*}, \sigma \mid \boldsymbol{\nu}\right)=\sigma^{-1}
$$

About $\pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right)$

- The most delicate ingredient in the prior assignment.
- Enters into the equation for the $m_{\gamma}(\cdot)$ in a multiplicative-way. Not possible to use an improper prior, its indeterminate constant will be transferred to the marginal, it will not cancel in the BF calculation (different for each \mathcal{M}_{γ}).
- The prior $\pi_{\gamma}\left(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}\right)$ has to be proper.
- For full observed data, and within the g-prior approach:

$$
\boldsymbol{\theta}_{\gamma} \sim N_{p}\left(\mathbf{0}, \boldsymbol{V}_{\gamma}\right)
$$

with \boldsymbol{V}_{γ} obtained from the expected Fisher information matrix under \mathcal{M}_{γ}

- Many popular proposals in the literature are generalizations of this basic idea: For normal linear models, Benchmark priors (Fernandez et al., 2001), hyper- g priors (Liang et al., 2008); robust prior (Bayarri et al., 2012); etc.
- Revisiting the original definition of V_{γ} in the problem of regression.
- Consider $\boldsymbol{\theta}_{0}=\left(\beta_{0}, \sigma\right)$ and $\boldsymbol{\theta}_{\gamma} \equiv \boldsymbol{\beta}_{\gamma}$,
- Definition of the prior covariance matrix in the Zellner and Siow, (1980) proposal is

$$
V_{\gamma}=n\left(I\left(\beta_{0}\right) / I\left(\beta_{0}, \boldsymbol{\beta}_{\gamma}\right)\right)^{-1}
$$

- n times the Schur complement of $I\left(\beta_{0}\right)$ in $I\left(\beta_{0}, \boldsymbol{\beta}_{\gamma}\right)$, the Fisher information matrix for ($\beta_{0}, \boldsymbol{\beta}_{\gamma}$).
- Equal to using the variance matrix of the m.l.e. of $\boldsymbol{\beta}_{\gamma}$ (Bayarri et al., 2012)

■ In normal linear models, with full-observed fixed design matrix it is:

$$
V_{\gamma}=n \sigma^{2}\left(\bar{X}_{\gamma}^{T} \bar{X}_{\gamma}\right)^{-1}, \text { with } \bar{X}_{\gamma} \text { made by columns centered around the mean. }
$$

Result (Variance matrix)

Suppose $\boldsymbol{z}_{i}=\left(y_{i}, \boldsymbol{x}_{i}\right) \sim \mathcal{M}_{\gamma}$ where

$$
\left(y_{i}, \boldsymbol{x}_{i}\right) \stackrel{\mathrm{iid}}{\sim} N\left(y_{i} \mid \beta_{0}+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{\gamma}, \sigma^{2}\right) f\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)
$$

then, provided f has at least the first two moments:

$$
n^{-1}\left(I\left(\beta_{0}\right) / I\left(\beta_{0}, \beta_{\gamma}\right)\right)=\frac{1}{\sigma^{2}} V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)
$$

where $V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)=E\left[\left(\boldsymbol{x}_{i}-E\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)\right)^{T}\left(\boldsymbol{x}_{i}-E\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)\right)\right]$ with expectations respect to $f\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)$.

PRIOR over $\boldsymbol{\beta}_{\gamma}$

- Our proposal to incorporate the g-priors into the missing context is consider:

$$
\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\nu}, \beta_{0}, \sigma \sim N\left(\mathbf{0}, \sigma^{2} V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)^{-1}\right)
$$

- Or with flat-tailed alternatives:

$$
\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\nu}, \beta_{0}, \sigma \sim \int N\left(\mathbf{0}, g \sigma^{2} V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)^{-1}\right) \pi(g) d g
$$

- Different $\pi(g)$ leads to different well known priors for model selection.
- $V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)$ is a completely valid component of the conditional (on $\boldsymbol{\nu}$) prior covariance matrix.
- In fact, this prior is even more Bayesian than the g-prior as it does not depend on n nor on the data \boldsymbol{x}.

Result (Priors in linear regression)

To compare $H_{1} \equiv \mathcal{M}_{\gamma}:\left(y_{i}, \boldsymbol{x}_{i}\right) \stackrel{\text { iid }}{\sim} N\left(y_{i} \mid \beta_{0}+\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}_{\gamma}, \sigma^{2}\right) f\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)$ versus the null model (only intercept), the priors under each hypothesis are:

$$
\begin{aligned}
\pi_{0}\left(\beta_{0}, \sigma, \boldsymbol{\nu}\right) & =\sigma^{-1} \pi^{N}(\boldsymbol{\nu}) \\
\pi_{1}\left(\beta_{0}, \sigma, \boldsymbol{\beta}_{\gamma}, \boldsymbol{\nu}\right) & =\sigma^{-1} N\left(\boldsymbol{\beta}_{\gamma} \mid 0, g \sigma^{2} V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)^{-1}\right) \pi^{N}(\boldsymbol{\nu})
\end{aligned}
$$

with $g=1$, (or flat-tailed versions, $g \sim \pi(g)$) where $\pi^{N}(\boldsymbol{\nu})$ is an appropriate objective prior for $\boldsymbol{\nu}$ in relation to $f\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)$

Example (Simple linear regression (cont.))

- $X \stackrel{\text { iid }}{\sim} N\left(\mu_{x}, \sigma_{x}^{2}\right)$, so $\boldsymbol{\nu}=\left(\mu_{x}, \sigma_{x}\right)$, in this case $V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)=\sigma_{x}^{2}$, then:

$$
\pi_{1}\left(\beta \mid \beta_{0}, \sigma, \sigma_{x}, \mu_{x}\right)=N\left(\beta \mid 0, \frac{\sigma^{2}}{\sigma_{x}^{2}}\right)
$$

- With the parameterized version of \mathcal{M}_{1} to define a common prior over $\boldsymbol{\theta}_{0}$,
- Using the previous result to obtain the prior in this parameterization:

$$
n^{-1}\left(I\left(\beta_{0}^{*}\right) / I\left(\beta_{0}, \beta_{\gamma}\right)\right)=\frac{1}{\sigma^{2}} V\left(x_{i}-\mu_{x} \mid \boldsymbol{\nu}\right)=\frac{1}{\sigma^{2}} V\left(x_{i} \mid \boldsymbol{\nu}\right),
$$

in the simple regression example: $\pi_{1}^{*}\left(\beta \mid \beta_{0}^{*}, \sigma, \sigma_{x}, \mu_{x}\right)=N\left(\beta \mid 0, \frac{\sigma^{2}}{\sigma_{x}^{2}}\right)$.

- Then, $\pi_{0}\left(\beta_{0}, \sigma, \mu_{x}, \sigma_{x}\right)=\left(\sigma \sigma_{x}\right)^{-1}$ and for \mathcal{M}_{1}^{*} :
$\pi_{1}^{*}\left(\beta_{0}^{*}, \sigma, \beta, \mu_{x}, \sigma_{x}\right)=\left(\sigma \sigma_{x}\right)^{-1} N\left(\beta \mid 0, \frac{\sigma^{2}}{\sigma_{x}^{2}}\right)$.
■ Same priors in terms of the original problem \mathcal{M}_{0} vs. \mathcal{M}_{1} (associated Jacobian is 1).
- The Bayes factor of \mathcal{M}_{γ} to \mathcal{M}_{0} is obtained as:

$$
B_{\gamma}=\frac{m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}{m_{0}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)},
$$

- In general scenarios, with missing values also in the null model, the previous BF can be approximated as ratio of the approximated marginals:

$$
\widehat{B}_{\gamma}=\frac{m_{\gamma} \widehat{\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}}{m_{0} \widehat{\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}}
$$

- In some cases, i.e. if \mathcal{M}_{0} does not have missing values, it is possible to average also de BFs.

Result (Ratio of completed-predictive densities)

Under the conditions in the Result about priors for regression models, $\mathfrak{m}_{0}\left(\boldsymbol{y} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right)$ does not depend on ν, and under the null model this quantity does not depend on $\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}$ neither. So,

$$
\begin{align*}
\frac{\mathfrak{m}_{1}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right)}{m_{0}(\widetilde{\boldsymbol{y}})} & =\left[\frac{S S E_{0}}{S S E_{0}-\widetilde{\boldsymbol{y}}^{T} \bar{X}\left(\bar{X}^{T} \bar{X}+V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right) / g\right)^{-1} \bar{X}^{T} \widetilde{\boldsymbol{y}}}\right] \\
& \times\left|\bar{X}^{T} \bar{X} V\left(\boldsymbol{x}_{i} \mid \boldsymbol{\nu}\right)^{-1}+1 / g \boldsymbol{I}\right|^{-1 / 2}, \tag{2}
\end{align*}
$$

\bar{X} is the completed design matrix (filled with $\widetilde{\boldsymbol{x}}_{(0)}$ and $\boldsymbol{x}_{(1)}$) with columns centered with respect to their mean and $S S E_{0}$ is the sum of residuals under \mathcal{M}_{0}, I denotes the $p \times p$ identity matrix.

Result (BF example linear regression)

Under the same conditions of the above results and using the priors proposed above, the expression for the BF for \mathcal{M}_{1} versus \mathcal{M}_{0} is:

$$
\begin{aligned}
B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right) & =\frac{\int \mathfrak{m}_{1}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right) \prod_{i=m+1}^{n} f\left(x_{i}^{n a} \mid \boldsymbol{\nu}\right) \pi_{1}\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}}{m_{0}(\widetilde{\boldsymbol{y}})} \\
& =\int \frac{\mathfrak{m}_{1}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}\right)}{m_{0}(\widetilde{\boldsymbol{y}})} \prod_{i=m+1}^{n} f\left(x_{i}^{n a} \mid \boldsymbol{\nu}\right) \pi_{1}\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right) d \boldsymbol{x}_{(1)} d \boldsymbol{\nu}
\end{aligned}
$$

The previous BF can be approximated as:
For $j=1, \ldots, N$:
■ Step 1: Draw $\boldsymbol{\nu}^{(j)} \sim \pi\left(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}\right)$,
■ Step 2: $\quad \operatorname{draw}\left(\boldsymbol{x}_{(1)}\right)^{(j)} \sim f\left(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}^{(j)}\right)$,

- Step 3: compute the ratio $r_{10}^{j}=\frac{\mathfrak{m}_{1}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\left(\boldsymbol{x}_{(1)}\right)^{(j)}, \boldsymbol{\nu}^{(j)}\right)}{m_{0}(\widetilde{\boldsymbol{y}})}$ given in equation (2).

Approximate

$$
B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right) \approx N^{-1} \sum_{i=1}^{N} r_{10}^{j}
$$

- Finally, for the comparison of the two hypothesis in the example, using $P\left(H_{0}\right)=P\left(H_{1}\right)=1 / 2$, the posterior probability for H_{1} is:

$$
P\left(H_{1} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)=\frac{B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}{1+B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}
$$

■ Finally, for the comparison of the two hypothesis in the example, using $P\left(H_{0}\right)=P\left(H_{1}\right)=1 / 2$, the posterior probability for H_{1} is:

$$
P\left(H_{1} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)=\frac{B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}{1+B_{10}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)}
$$

- However, in the Biometrics paper (2005), in any imputed data, $P\left(H_{1} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)},\left(\boldsymbol{x}_{(1)}\right)^{(j)}\right)$ is calculated, and the final posterior probability for H_{1} is obtained as a mean:

$$
\frac{1}{N} \sum_{j=1}^{N} P\left(H_{1} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)},\left(\boldsymbol{x}_{(1)}\right)^{(j)}\right)=\frac{1}{N} \sum_{j=1}^{N} \frac{B F^{j}}{1+B F^{j}}
$$

- Not admissible because of Jensen's inequality.

Example (Simple linear regression)

- We have simulated from:

$$
\binom{X_{1}}{X_{2}} \sim N_{2}\left(\binom{1}{2},\left(\begin{array}{cc}
1 & \rho^{*} \\
\rho^{*} & 1
\end{array}\right)\right), \quad Y \mid X_{1}=x_{1}, X_{2}=x_{2} \sim N_{1}\left(1+\beta_{1}^{*} x_{1}+\beta_{2}^{*} x_{2}, 1\right)
$$

with ρ^{*}, β_{1}^{*} and β_{2}^{*} are prefixed values used to reproduce several real scenarios.

- The complete simulated data D consist on $n=100$ draws from \boldsymbol{Z}.
- Interest: whether X_{1} is a explanatory variable for Y :

$$
\begin{aligned}
H_{0} & : f_{0}\left(y \mid x_{1}, x_{2}, \beta_{0}, \sigma\right)=N\left(y \mid \beta_{0}, \sigma^{2}\right) \\
H_{1} & : f_{1}\left(y \mid x_{1}, x_{2}, \beta_{0}, \beta, \sigma\right)=N\left(y \mid \beta_{0}+\beta_{1} x_{1}, \sigma^{2}\right)
\end{aligned}
$$

- If D would be completely observed, the Bayesian answer is the posterior probability $p\left(\mathcal{M}_{1} \mid D\right)$. This is the oracle response.
- We simulate a MAR mechanism for a proportion π in X_{1}, obtaining $\left(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}\right)$.

Example (Simple linear regression)

Consider 3 scenarios:
E1: $\beta_{1}^{*}=0.3, \beta_{2}^{*}=0$,
E2: $\beta_{1}^{*}=\beta_{2}^{*}=0$,
E3: $\beta_{1}^{*}=0, \beta_{2}^{*}=0.3$.
For each scenario $N=100$ datasets are generated for the combinations:

- $\rho^{*} \in\{0,0.4,0.7,0.9\}$
- $\pi \in\{0.05,0.15,0.40,0.60,0.75\}$

Example (Simple linear regression)

Integrating out X_{2} in the data generative process,

$$
Y \mid X_{1}=x_{1} \sim N_{1}\left(1+\beta_{2}^{*}\left(2-\rho^{*}\right)+\left(\beta_{1}^{*}+\rho^{*} \beta_{2}^{*}\right) x_{1}, 1+\left(\beta_{2}^{*}\right)^{2}\left(1-\left(\rho^{*}\right)^{2}\right)\right) .
$$

The ratio of the signal to the standard deviation is;

$$
S^{2}=\frac{\left(\beta_{1}^{*}+\rho^{*} \beta_{2}^{*}\right)^{2}}{1+\left(\beta_{2}^{*}\right)^{2}\left(1-\left(\rho^{*}\right)^{2}\right)}
$$

Summarized in the considered scenarios:

	$\rho^{*}=0$	$\rho^{*}=0.4$	$\rho^{*}=0.7$	$\rho^{*}=0.9$
E1	0.3^{2}	0.3^{2}	0.3^{2}	0.3^{2}
E2	0	0	0	0
E3	0	0.12^{2}	0.21^{2}	0.27^{2}

Results comparing Imputation with Remove

Results Imputation vs Remove. Probabilities Exp 1

Experiment: 1

Results Imputation vs Remove. Probabilities Exp 2

Experiment: 2

Results Imputation vs Remove. Probabilities Exp 3

Experiment: 3

Results Imputation vs Mean Prob. Exp 1

Experiment: 1

Experiment: 2

Experiment: 3

- $m_{\gamma}\left(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}\right)$: always an average of marginals obtained on imputed values: $m_{\gamma}\left(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}\right)$, over the posterior predictive $\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}$.
- Bayes factors: sometimes an average of BFs calculated in imputed data, in the sense of the MI word. Not longer true when \mathcal{M}_{0} has also missing values.
- Posterior probabilities: never an average of posterior probabilities calculated in imputed data.
- Study characteristics as predictive matching criteria and others in the predictive marginals obtained with the proposal priors.
- Analyze and develop the variable selection problem in the context of comparing a set of possible models.
- Analyze how to search in the space of all models when p (number of covariates is large) with missing data and exhaustive calculations are not possible.

Thanks for the attention!

[^5]

- Bayarri, M. J., J. O. Berger, A. Forte, and G. García-Donato (2012). Criteria for Bayesian model choice with application to variable selection. The Annals of Statistics.
- Fernández, C., E. Ley, and M. F. Steel (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics.
■ Hoijtink H., Gu, X., Mulder, J. and Rosseel, Y. (2019). Computing Bayes Factors from Data with Missing Values, Psychological Methods.
- Liang, F., R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger (2008). Mixtures of g-priors for Bayesian variable selection. Journal of the American Statistical Association.
- Little, R. and D. Rubin (2020). Statistical Analysis with Missing Data (3rd ed.). Wiley
- Yang, X., Belin, T. R. and Boscardin, W. J. (2005). Imputation and Variable Selection in Linear Regression Models with Missing Covariates. Biometrics.
- Zellner, A. and A. Siow (1980). Posterior odds for selected regression hypotheses. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith (Eds.), Bayesian Statistics

[^0]: *Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
 ${ }^{\dagger}$ Computing Bayes factors from data with missing values, 2019, Psychol Methods

[^1]: *Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
 ${ }^{\dagger}$ Computing Bayes factors from data with missing values, 2019, Psychol Methods

[^2]: *Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
 ${ }^{\dagger}$ Computing Bayes factors from data with missing values, 2019, Psychol Methods

[^3]: *Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
 ${ }^{\dagger}$ Computing Bayes factors from data with missing values, 2019, Psychol Methods

[^4]: *Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
 ${ }^{\dagger}$ Computing Bayes factors from data with missing values, 2019, Psychol Methods

[^5]: \ddagger Grant PID2019-104790GB-I00 funded by

