MODEL UNCERTAINTY QUANTIFICATION IN PRESENCE OF MISSING DATA

O'BAYES 2022

María Eugenia Castellanos¹, Stefano Cabras², Anabel Forte ³, Gonzalo García-Donato ⁴ & Alicia Quirós⁵

¹ Universidad Rey Juan Carlos

- ² Universidad Carlos III de Madrid
- ³ Universidad de Valencia
- ⁴ Universidad Castilla-La Mancha

⁵ Universidad de León

Santa Cruz, September, 2022

• Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.

- Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p$,

- Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p,$
- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma})$$

- Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p$,
- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}).$$

• Only z_i with $i \in i^{obs} = \{i_1, \dots, i_m\}$ are fully observed (first *m* components) due to reasons independent of f_{γ} (Missing At Random scenario)

- Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p$,
- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}).$$

- Only z_i with $i \in i^{obs} = \{i_1, \dots, i_m\}$ are fully observed (first *m* components) due to reasons independent of f_{γ} (Missing At Random scenario)
- D^{obs} denotes all observed components.

- Consider a random sample $z_i = (y_i, x_{1,i}, \dots, x_{p,i}), i = 1, \dots n$.
- Interested in: $\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p$,
- Several competing regression models (indexed by $\gamma \in \Gamma$),

$$\mathcal{M}_{\gamma}: \boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}).$$

- Only z_i with $i \in i^{obs} = \{i_1, \dots, i_m\}$ are fully observed (first *m* components) due to reasons independent of f_{γ} (Missing At Random scenario)
- D^{obs} denotes all observed components.

In this context...

- How to make model selection?
- How to measure model uncertainty: different models affected by a different set of missing data?

 From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;

- From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;
- Bad approaches: they sacrifice useful information producing bias results, except perhaps for particular cases as Missing Completely At Random (MCAR).

- From a non-Bayesian point of view: case-deletion or complete-case strategies applying step-wise selection with AIC or BIC, or other tests;
- Bad approaches: they sacrifice useful information producing bias results, except perhaps for particular cases as Missing Completely At Random (MCAR).
- Within the multiple imputation (MI) approach, proposed by Rubin (1987), what we call MI world, traditional non-Bayesian variable selection tools are difficult to be applied.

MODEL SELECTION WITH MISSING DATA: BAYESIAN PERSPECTIVE

MI world ~> apply statistical techniques to MI data-sets, there are two proposals in literature:

^{*}Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, *Biometrics.* [†]Computing Bayes factors from data with missing values, 2019, *Psychol Methods*

- MI world ~→ apply statistical techniques to MI data-sets, there are two proposals in literature:
- The *Biometrics* paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.

*Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, *Biometrics.* [†]Computing Bayes factors from data with missing values, 2019, *Psychol Methods*

- MI world ~>> apply statistical techniques to MI data-sets, there are two proposals in literature:
- The *Biometrics* paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
 - Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.

^{*}Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, *Biometrics*. †Computing Bayes factors from data with missing values, 2019, *Psychol Methods*

- MI world ~>> apply statistical techniques to MI data-sets, there are two proposals in literature:
- The *Biometrics* paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
 - Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.
- A recent paper by Hoijtink, Gu, Mulder and Rosseel, 2019, discusses how to compute Bayes Factors (BFs) doing MI for hypothesis testing in Psychology.

^{*}Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, *Biometrics.* [†]Computing Bayes factors from data with missing values, 2019, *Psychol Methods*

- MI world ~~> apply statistical techniques to MI data-sets, there are two proposals in literature:
- The *Biometrics* paper by Yang, Belin and Moscardin (2005)*, a first attempt to make imputation and Bayesian variable selection in linear regression models.
 - Intuitively, they propose a way to obtain the posterior probability for each possible model in each imputed data set, and averaging posterior probabilities for each model over the MI data-sets.
- A recent paper by Hoijtink, Gu, Mulder and Rosseel, 2019, discusses how to compute Bayes Factors (BFs) doing MI for hypothesis testing in Psychology.
 - To average BFs approximating marginal distributions from Gibbs output over the imputed data sets.

^{*}Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, *Biometrics.* [†]Computing Bayes factors from data with missing values, 2019, *Psychol Methods*

 Revisit all concepts that appear in model selection/model uncertainty obtaining their formulation in presence of missing data;

- Revisit all concepts that appear in model selection/model uncertainty obtaining their formulation in presence of missing data;
- The basic ingredient for model uncertainty quantification (MUQ) is the predictive density in the observed data,

$$m(D^{obs}) = \int f(D^{obs} \mid \boldsymbol{\theta}) \, d\Pi(\boldsymbol{\theta}) = \int f(D^{obs}, D^{na} \mid \boldsymbol{\theta}) \, dD^{na} \, \pi(\boldsymbol{\theta}) d\boldsymbol{\theta},$$

where D^{na} denotes the missing components in z_i , with $i \in m + 1, m + 2, ..., n$. (D^{obs} denotes all the components of z observed).

OUTLINE

1 Motivation about model selection with missing data

- 2 Regression models. Full observed data
- 3 Regression models. Missing data
- 4 Computing marginals with missing data
 - Prior distributions
 - Bayes Factors
 - Posterior probabilities
- 5 Simulated example
- 6 Comments and remarks

• The entertained regression models may differ in a number of ways:

- 1. Set of covariates needed to explain Y or,
- 2. Density assumed for the errors in linear models.

The entertained regression models may differ in a number of ways:

- 1. Set of covariates needed to explain Y or,
- 2. Density assumed for the errors in linear models.
- Notation:
 - θ_0 parameters appearing in all competing models;
 - θ_{γ} specific parameter in \mathcal{M}_{γ} ;
 - A more precise labelling for the parameters of M_γ is ((θ₀)_γ, θ_γ), we abuse notation considering (θ₀, θ_γ).

In designed experiments, the marginal distribution is obtained "conditional" on the values of covariates:

$$m_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p}) = \int f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}) \pi_{\gamma}(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma} \mid \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p}) d\boldsymbol{\theta}_{0} d\boldsymbol{\theta}_{\gamma}$$

- Usual prior distributions over θ_γ: Zellner–Siow priors, robust priors, hyper-g-priors, etc, use a conditional variance that depends on *x_i*, *i* = 1,..., *p*.
- This is legitimate as the *x_i* are fixed covariates designed for the experiment.

- Covariates are random: compare models in the basis of how they predict all observed values.
- Introducing the idea of competing models as joint statistical models:

$$\mathcal{M}_\gamma:oldsymbol{y},oldsymbol{x}_1,\dots,oldsymbol{x}_p,oldsymbol{ heta}_0,oldsymbol{ heta}_\gamma)f(oldsymbol{x}_1,\dots,oldsymbol{x}_p\midoldsymbol{
u})$$

• The marginal density:

$$m_{\gamma}(\boldsymbol{y}, \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p}) = \int f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}) f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{p} \mid \boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}) d\boldsymbol{\theta}_{0} d\boldsymbol{\theta}_{\gamma} d\boldsymbol{\nu}.$$

Full observed data. Observational Studies (cont.)

• Assuming prior independence: $\pi_{\gamma}(\theta_0, \theta_{\gamma}, \nu) = \pi_{\gamma}(\theta_0, \theta_{\gamma})\pi(\nu)$, then

$$\underbrace{\int_{m_{\gamma}(\boldsymbol{y},\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p})=}_{m(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p}\mid\boldsymbol{\nu})\pi(\boldsymbol{\nu})d\boldsymbol{\nu}}\times\int_{m_{\gamma}(\boldsymbol{y}\mid\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p},\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})\pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})d\boldsymbol{\theta}_{0}d\boldsymbol{\theta}_{\gamma}.$$

- First factor is independent of the model and would cancel in the BF.
- The distribution $f(x_1, \ldots, x_p \mid \boldsymbol{\nu})$ is negligible \rightarrow identical results that in the fixed covariates case.
- Justification of the no discussion about the fixed or random covariates: it does not affect results...

Full observed data. Observational Studies (cont.)

• Assuming prior independence: $\pi_{\gamma}(\theta_0, \theta_{\gamma}, \nu) = \pi_{\gamma}(\theta_0, \theta_{\gamma})\pi(\nu)$, then

$$\underbrace{\int_{m_{\gamma}(\boldsymbol{y},\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p})=}_{m(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p}\mid\boldsymbol{\nu})\pi(\boldsymbol{\nu})d\boldsymbol{\nu}} \times \int_{m_{\gamma}(\boldsymbol{y}\mid\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{p},\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})\pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})d\boldsymbol{\theta}_{0}d\boldsymbol{\theta}_{\gamma}.$$

- First factor is independent of the model and would cancel in the BF.
- The distribution $f(x_1, \ldots, x_p \mid \boldsymbol{\nu})$ is negligible \rightarrow identical results that in the fixed covariates case.
- Justification of the no discussion about the fixed or random covariates: it does not affect results...

First message

But... $\pi_{\gamma}(\theta_0, \theta_{\gamma})$ cannot depend on x_1, \ldots, x_p , invalidating the most popular priors: *g*-prior, Zellner-Ziow prior, hyper-g prior, robust prior, etc.

• Missing values only in covariates. Not missing values in y.

MISSING DATA. NOTATION

- Missing values only in covariates. Not missing values in y.
- Tilde symbol used to represent a realization of a random or vector variable. \tilde{y} is a realization of the random vector y.

MISSING DATA. NOTATION

- Missing values only in covariates. Not missing values in y.
- Tilde symbol used to represent a realization of a random or vector variable. \tilde{y} is a realization of the random vector y.
- Consider a $n \times p$ binary matrix $M = (m_{ij})$,

with $m_{ij} = 1$ when x_{ij} is missing.

- Missing values only in covariates. Not missing values in y.
- Tilde symbol used to represent a realization of a random or vector variable. \tilde{y} is a realization of the random vector y.
- Consider a $n \times p$ binary matrix $M = (m_{ij})$,

with $m_{ij} = 1$ when x_{ij} is missing.

• M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

 $\boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, M \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}) f(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_p \mid \boldsymbol{\nu}) f(M \mid \boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\psi}).$

- Missing values only in covariates. Not missing values in y.
- Tilde symbol used to represent a realization of a random or vector variable. \tilde{y} is a realization of the random vector y.
- Consider a $n \times p$ binary matrix $M = (m_{ij})$,

with $m_{ij} = 1$ when x_{ij} is missing.

• M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

 $\boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, M \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}) f(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_p \mid \boldsymbol{\nu}) f(M \mid \boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\psi}).$

Missingness \rightarrow only certain values of the covariates are observed: $\tilde{x}_{(0)}$, i.e. $\tilde{x}_{(0)} = {\tilde{x}_{ij} : \tilde{m}_{ij} = 0}.$

- Missing values only in covariates. Not missing values in y.
- Tilde symbol used to represent a realization of a random or vector variable. \tilde{y} is a realization of the random vector y.
- Consider a $n \times p$ binary matrix $M = (m_{ij})$,

with $m_{ij} = 1$ when x_{ij} is missing.

• M is a random matrix entering into the competing models, so each \mathcal{M}_{γ} is:

 $\boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, M \sim f_{\gamma}(\boldsymbol{y} \mid \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\theta}_0, \boldsymbol{\theta}_{\gamma}) f(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_p \mid \boldsymbol{\nu}) f(M \mid \boldsymbol{y}, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_p, \boldsymbol{\psi}).$

- Missingness \rightarrow only certain values of the covariates are observed: $\tilde{x}_{(0)}$, i.e. $\tilde{x}_{(0)} = {\tilde{x}_{ij} : \tilde{m}_{ij} = 0}.$
- **Rest** of components of covariates are random, denoted as $x_{(1)}$.

- Different mechanisms assumed to represent the missingness structure (described in Little and Rubin, 2020).
- Consider Missing at Random, (MAR) mechanism, the weakest condition to avoid specifying the probability distribution of M;
- Missing data are MAR for an observed data $(\widetilde{M},\widetilde{\pmb{y}},\widetilde{\pmb{x}}_{(0)})$ if

 $f(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\psi}) = f(\widetilde{M} \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}^{\star}, \boldsymbol{\psi}), \text{ for any } \boldsymbol{x}_{(1)} \neq \boldsymbol{x}_{(1)}^{\star}$

Abbreviated: $f(\widetilde{M} \mid \widetilde{y}, \widetilde{x}_{(0)}, x_{(1)}, \psi)$ does not depend on $x_{(1)}$.

Join prior predictive marginal:

$$\begin{split} m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\widetilde{M}) &= \int m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\widetilde{M})d\boldsymbol{x}_{(1)} \\ &= \int f_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\widetilde{M} \mid \boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu},\boldsymbol{\psi}) \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu},\boldsymbol{\psi})d\boldsymbol{\theta}_{0}d\boldsymbol{\theta}_{\gamma} d\boldsymbol{\nu}d\boldsymbol{\psi}d\boldsymbol{x}_{(1)} \\ &= \int \left[f_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})f(\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)} \mid \boldsymbol{\nu})f(\widetilde{M} \mid \widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\psi}) \\ &\times \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu},\boldsymbol{\psi})d\boldsymbol{\theta}_{0}d\boldsymbol{\theta}_{\gamma} d\boldsymbol{\nu}d\boldsymbol{\psi}d\boldsymbol{x}_{(1)} \right] \end{split}$$

• Using the MAR assumption and considering independence between parameters governing the missing mechanism and the rest: $\pi_{\gamma}(\psi \mid \theta_0, \theta_{\gamma}, \nu) = \pi(\psi)$ (we call these MU-ignorable condition).

$$m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\widetilde{M}) = m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)}) \int f(\widetilde{M} \mid \widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{\psi}) \pi(\boldsymbol{\psi}) d\boldsymbol{\psi}$$

where

$$m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)}) = \int f_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}) f(\widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\gamma}, \boldsymbol{\nu}) d\boldsymbol{\theta}_{0} d\boldsymbol{\theta}_{\gamma} d\boldsymbol{\nu} d\boldsymbol{x}_{(1)}.$$

 \blacksquare In the above equation (in pink), the second factor does not depend on $\gamma \to {\rm cancel}$ out in the BFs.

COMPUTING MARGINALS WITH MISSING DATA

- Under the MU-ignorable condition, and considering conditional prior independence: $\pi_{\gamma}(\theta_0, \theta_{\gamma}, \nu) = \pi_{\gamma}(\theta_0, \theta_{\gamma} | \nu)\pi_{\gamma}(\nu).$
- The marginal prior of interest is:

$$\begin{split} n_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)}) &= \int f_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)} \mid \boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu}) \, \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu}) \, d\boldsymbol{x}_{(1)} \, d(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu}) \\ &= \int \left[\underbrace{\int f_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma}) \, \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}) d(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma})}_{\boldsymbol{\mathfrak{m}}_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\nu})} \\ &\times f(\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\nu}) \, d\boldsymbol{x}_{(1)} d\boldsymbol{\nu} \right] \\ &= \int \mathfrak{m}_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\nu}) \, f(\widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)} \mid \boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\nu}) \, d\boldsymbol{x}_{(1)} \, d\boldsymbol{\nu} \\ &= \int \mathfrak{m}_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\nu}) \, f(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{\nu}) f(\widetilde{\boldsymbol{x}}_{(0)} \mid \boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\nu}) \, d\boldsymbol{x}_{(1)} \, d\boldsymbol{\nu} \\ &= m_{\gamma}(\widetilde{\boldsymbol{x}}_{(0)}) \int \mathfrak{m}_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{x}_{(1)},\boldsymbol{\nu}) \, f(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)},\boldsymbol{\nu}) \pi_{\gamma}(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}) \, d\boldsymbol{x}_{(1)} \, d\boldsymbol{\nu} \end{split}$$

If $\mathfrak{m}_{\gamma}(\tilde{\boldsymbol{y}} \mid \tilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu})$ can be easily evaluated, then $m_{\gamma}(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{x}}_{(0)})$ can be approximated by simulation:

For $j = 1, \ldots, N$:

- 1 : Draw $oldsymbol{
 u}^{(j)} \sim \pi_\gamma(oldsymbol{
 u} \mid \widetilde{oldsymbol{x}}_{(0)})$,
- 2 : draw $({m x}_{(1)})^{(j)} \sim f({m x}_{(1)} \mid \widetilde{{m x}}_{(0)}, {m
 u}^{(j)})$,
- 3 : compute $\mathfrak{m}^{(j)} = \mathfrak{m}_{\gamma}(\widetilde{oldsymbol{y}} \mid \widetilde{oldsymbol{x}}_{(0)}, (oldsymbol{x}_{(1)})^{(j)}, oldsymbol{
 u}^{(j)})$,
- Approximate

$$\widehat{m_{\gamma}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)})} = N^{-1} \sum \mathfrak{m}^{(j)}$$

Steps 1 and 2 are doing with an augmented Gibbs scheme.

Example (Simple linear regression)

- Our data contains observations from three variables $(y, x_1, x_2) \in \mathbb{R}^3$.
- \blacksquare Two competing regression models, explaining $Y{:}$

$$\begin{aligned} H_0 &: f_0(y \mid x_1, x_2, \beta_0, \sigma) = N(y \mid \beta_0, \sigma^2), \\ H_1 &: f_1(y \mid x_1, x_2, \beta_0, \beta, \sigma) = N(y \mid \beta_0 + \beta_1 x_1, \sigma^2). \end{aligned}$$

- $\Gamma = \{0, 1\}$, variable x_2 is is not relevant for this model uncertainty problem, but it will be for making imputation.
- Here θ₀ = (β₀, σ) are common parameters for both regression models, while θ_γ = β₁ is specific to M₁.

Prior distributions considered

- Objective or non-informative setting.
- Adaptation of well-known practices in the model uncertainty literature to the missing data problems.
- Prior for \mathcal{M}_{γ} :

 $\pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu}) = \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu})\pi_{\gamma}(\boldsymbol{\nu}) = \pi_{\gamma}(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu},\boldsymbol{\theta}_{0})\pi_{\gamma}(\boldsymbol{\theta}_{0} \mid \boldsymbol{\nu})\pi_{\gamma}(\boldsymbol{\nu}).$

Prior distributions considered

- Objective or non-informative setting.
- Adaptation of well-known practices in the model uncertainty literature to the missing data problems.
- Prior for \mathcal{M}_{γ} :

$$\pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma},\boldsymbol{\nu}) = \pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu})\pi_{\gamma}(\boldsymbol{\nu}) = \pi_{\gamma}(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu},\boldsymbol{\theta}_{0})\pi_{\gamma}(\boldsymbol{\theta}_{0} \mid \boldsymbol{\nu})\pi_{\gamma}(\boldsymbol{\nu}).$$

Definition (Prior scheme recommended)

$$\pi_{\gamma}(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu}) = \pi(\boldsymbol{\theta}_{0})\pi_{\gamma}(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu},\boldsymbol{\theta}_{0}), \ \pi_{\gamma}(\boldsymbol{\nu}) = \pi(\boldsymbol{\nu}), \tag{1}$$

where $\pi_{\gamma}(\theta_{\gamma} \mid \boldsymbol{\nu}, \theta_0)$ is proper and depends on $\boldsymbol{\nu}$ and $\pi(\boldsymbol{\nu})$ and/or $\pi(\theta_0)$ are potentially improper.

For models that only have common parameters, (1) should be understood as:

$$\pi_{\gamma}(\boldsymbol{\theta}_0 \mid \boldsymbol{\nu}) = \pi(\boldsymbol{\theta}_0), \ \pi_{\gamma}(\boldsymbol{\nu}) = \pi(\boldsymbol{\nu}).$$

Prior distributions considered (cont.)

For the priors defined above, $m_{\gamma}(\widetilde{x}_{(0)})$ is independent of γ and

$$m_{\gamma}(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}) = \boldsymbol{m}(\widetilde{\boldsymbol{x}}_{(0)}) \int \mathfrak{m}_{\gamma}(\boldsymbol{y} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}) f(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}) \pi(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}) d\boldsymbol{x}_{(1)} d\boldsymbol{\nu},$$

 $ightarrow m(\widetilde{m{x}}_{(0)})$ cancels in the BFs. as it appears in all models.

 \blacksquare For the priors defined above, $m_\gamma(\widetilde{m{x}}_{(0)})$ is independent of γ and

$$m_{\gamma}(\boldsymbol{y}, \widetilde{\boldsymbol{x}}_{(0)}) = \boldsymbol{m}(\widetilde{\boldsymbol{x}}_{(0)}) \int \mathfrak{m}_{\gamma}(\boldsymbol{y} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}) f(\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{\nu}) \pi(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}) d\boldsymbol{x}_{(1)} d\boldsymbol{\nu},$$

 $ightarrow m(\widetilde{m{x}}_{(0)})$ cancels in the BFs. as it appears in all models.

About $\pi_{\gamma}(\boldsymbol{\nu})$

- Contributes to $m_{\gamma}(\boldsymbol{y}, \tilde{\boldsymbol{x}}_{(0)})$ through $\pi_{\gamma}(\boldsymbol{\nu} \mid \tilde{\boldsymbol{x}}_{(0)})$, under weak conditions this is a proper distribution.
- It can be used an improper prior.
- The meaning of $\boldsymbol{\nu}$ does not change with M_{γ} , $f(\boldsymbol{x} \mid \boldsymbol{\nu})$ is independent of $\boldsymbol{\gamma} \rightarrow \text{same } \pi_{\gamma}(\boldsymbol{\nu})$ for every model \mathcal{M}_{γ} .

Example (Simple linear regression (cont.))

- Consider $X = X_1$ a continuous regressor and assume $X \stackrel{\text{iid}}{\sim} N(\mu_x, \sigma_x^2)$, so $\boldsymbol{\nu} = (\mu_x, \sigma_x)$.
- The priors to assign can be expressed: $\pi_0(\beta_0, \sigma, \nu) = \pi_0(\beta_0, \sigma \mid \mu_x, \sigma_x)\pi_0(\mu_x, \sigma_x)$, and

$$\pi_1(\beta_1, \beta_0, \sigma, \nu) = \pi_1(\beta_0, \sigma \mid \mu_x, \sigma_x) \pi_1(\beta_1 \mid \beta_0, \sigma, \mu_x, \sigma_x) \pi_1(\mu_x, \sigma_x)$$

The reference prior for X model is $\pi(\mu_x, \sigma_x) = \sigma_x^{-1}$, we consider: $\pi_0(\mu_x, \sigma_x) = \pi_1(\mu_x, \sigma_x) = \sigma_x^{-1}$.

- Consider a non-informative prior as θ_0 are common parameters.
- Reasonable when θ_0 have a similar interpretation in all models, in this case we should use an objective estimation prior.

Example (Simple linear regression (cont.))

Common parameters are: $\boldsymbol{\theta}_0 = (\beta_0, \sigma)$.

- Under \mathcal{M}_0 , β_0 represents the mean of all y, under M_1 it is the mean of $y \mid x = 0$. Since x has mean μ_x the meaning of both β_0 can be very different.
- To achieve similar meaning, \rightarrow a reparametrization under \mathcal{M}_1 : $\beta_0^* = \beta_0 + \beta \mu_x$ then $y_i \mid x_i \sim N(\beta_0^* + \beta(x_i \mu_x), \sigma^2)$.
- Now the prior over common parameters is:

$$\pi_0(\beta_0, \sigma \mid \boldsymbol{\nu}) = \sigma^{-1} \text{ and } \pi_1^*(\beta_0^*, \sigma \mid \boldsymbol{\nu}) = \sigma^{-1}$$

- The most delicate ingredient in the prior assignment.
- Enters into the equation for the $m_{\gamma}(\cdot)$ in a multiplicative-way. Not possible to use an improper prior, its indeterminate constant will be transferred to the marginal, it will not cancel in the BF calculation (different for each \mathcal{M}_{γ}).
- The prior $\pi_{\gamma}(\boldsymbol{\theta}_{\gamma} \mid \boldsymbol{\nu})$ has to be proper.
- For full observed data, and within the *g*-prior approach:

$$\boldsymbol{\theta}_{\gamma} \sim N_p(\mathbf{0}, \boldsymbol{V}_{\gamma}),$$

with $oldsymbol{V}_\gamma$ obtained from the expected Fisher information matrix under \mathcal{M}_γ

Many popular proposals in the literature are generalizations of this basic idea: For normal linear models, Benchmark priors (Fernandez et al., 2001), hyper-g priors (Liang et al., 2008); robust prior (Bayarri et al., 2012); etc.

Which $oldsymbol{V}_\gamma$ with missing data?

- Revisiting the original definition of V_{γ} in the problem of regression.
- Consider $\boldsymbol{\theta}_0 = (\beta_0, \sigma)$ and $\boldsymbol{\theta}_{\gamma} \equiv \boldsymbol{\beta}_{\gamma}$,
- Definition of the prior covariance matrix in the Zellner and Siow, (1980) proposal is

$$V_{\gamma} = n \big(I(\beta_0) / I(\beta_0, \boldsymbol{\beta}_{\gamma}) \big)^{-1}$$

- *n* times the Schur complement of $I(\beta_0)$ in $I(\beta_0, \beta_\gamma)$, the Fisher information matrix for (β_0, β_γ) .
- Equal to using the variance matrix of the m.l.e. of β_{γ} (Bayarri et al., 2012)
- In normal linear models, with full-observed fixed design matrix it is:

 $V_{\gamma} = n\sigma^2 \, (\bar{X}_{\gamma}^T \bar{X}_{\gamma})^{-1}$, with \bar{X}_{γ} made by columns centered around the mean.

Result (Variance matrix)

Suppose $oldsymbol{z}_i = (y_i, oldsymbol{x}_i) \sim \mathcal{M}_\gamma$ where

$$(y_i, \boldsymbol{x}_i) \stackrel{\mathrm{iid}}{\sim} N(y_i \mid \beta_0 + \boldsymbol{x}_i^T \boldsymbol{\beta}_{\gamma}, \sigma^2) f(\boldsymbol{x}_i \mid \boldsymbol{\nu}),$$

then, provided f has at least the first two moments:

$$n^{-1}(I(\beta_0)/I(\beta_0,\beta_\gamma)) = \frac{1}{\sigma^2} V(\boldsymbol{x}_i \mid \boldsymbol{\nu})$$

where $V(\mathbf{x}_i \mid \mathbf{\nu}) = E[(\mathbf{x}_i - E(\mathbf{x}_i \mid \mathbf{\nu}))^T (\mathbf{x}_i - E(\mathbf{x}_i \mid \mathbf{\nu}))]$ with expectations respect to $f(\mathbf{x}_i \mid \mathbf{\nu})$.

• Our proposal to incorporate the *g*-priors into the missing context is consider:

$$\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\nu}, \beta_0, \sigma \sim N(\boldsymbol{0}, \sigma^2 V(\boldsymbol{x}_i \mid \boldsymbol{\nu})^{-1})$$

• Or with flat-tailed alternatives:

$$\boldsymbol{\beta}_{\gamma} \mid \boldsymbol{\nu}, \beta_0, \sigma \sim \int N(\boldsymbol{0}, g \sigma^2 V(\boldsymbol{x}_i \mid \boldsymbol{\nu})^{-1}) \pi(g) dg.$$

- Different $\pi(g)$ leads to different well known priors for model selection.
- $V(x_i \mid \boldsymbol{\nu})$ is a completely valid component of the conditional (on $\boldsymbol{\nu}$) prior covariance matrix.
- In fact, this prior is even more Bayesian than the g-prior as it does not depend on n nor on the data x.

Result (Priors in linear regression)

To compare $H_1 \equiv \mathcal{M}_{\gamma}: (y_i, \boldsymbol{x}_i) \stackrel{\text{iid}}{\sim} N(y_i \mid \beta_0 + \boldsymbol{x}_i^T \boldsymbol{\beta}_{\gamma}, \sigma^2) f(\boldsymbol{x}_i \mid \boldsymbol{\nu})$ versus the null model (only intercept), the priors under each hypothesis are:

$$\pi_0(\beta_0, \sigma, \boldsymbol{\nu}) = \sigma^{-1} \pi^N(\boldsymbol{\nu}), \pi_1(\beta_0, \sigma, \boldsymbol{\beta}_{\gamma}, \boldsymbol{\nu}) = \sigma^{-1} N(\boldsymbol{\beta}_{\gamma} \mid 0, g\sigma^2 V(\boldsymbol{x}_i \mid \boldsymbol{\nu})^{-1}) \pi^N(\boldsymbol{\nu})$$

with g = 1, (or flat-tailed versions, $g \sim \pi(g)$) where $\pi^N(\nu)$ is an appropriate objective prior for ν in relation to $f(\mathbf{x}_i \mid \nu)$

Example (Simple linear regression (cont.))

• $X \stackrel{\text{iid}}{\sim} N(\mu_x, \sigma_x^2)$, so $\boldsymbol{\nu} = (\mu_x, \sigma_x)$, in this case $V(\boldsymbol{x}_i \mid \boldsymbol{\nu}) = \sigma_x^2$, then:

$$\pi_1(\beta \mid \beta_0, \sigma, \sigma_x, \mu_x) = N(\beta \mid 0, \frac{\sigma^2}{\sigma_x^2}).$$

- With the parameterized version of \mathcal{M}_1 to define a common prior over $\boldsymbol{\theta}_0$,
- Using the previous result to obtain the prior in this parameterization:

$$n^{-1}(I(\beta_0^*)/I(\beta_0,\beta_{\gamma})) = \frac{1}{\sigma^2} V(x_i - \mu_x \mid \boldsymbol{\nu}) = \frac{1}{\sigma^2} V(x_i \mid \boldsymbol{\nu}),$$

in the simple regression example: $\pi_1^*(\beta \mid \beta_0^*, \sigma, \sigma_x, \mu_x) = N(\beta \mid 0, \frac{\sigma^2}{\sigma_x^2}).$

- Then, $\pi_0(\beta_0, \sigma, \mu_x, \sigma_x) = (\sigma\sigma_x)^{-1}$ and for \mathcal{M}_1^* : $\pi_1^*(\beta_0^*, \sigma, \beta, \mu_x, \sigma_x) = (\sigma\sigma_x)^{-1} N(\beta \mid 0, \frac{\sigma^2}{\sigma_x^2}).$
- Same priors in terms of the original problem \mathcal{M}_0 vs. \mathcal{M}_1 (associated Jacobian is 1).

• The Bayes factor of \mathcal{M}_{γ} to \mathcal{M}_{0} is obtained as:

$$B_{\gamma} = \frac{m_{\gamma}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}{m_0(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})},$$

In general scenarios, with missing values also in the null model, the previous BF can be approximated as ratio of the approximated marginals:

$$\widehat{B}_{\gamma} = \frac{\widehat{m_{\gamma}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}}{\widehat{m_{0}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}}$$

In some cases, i.e. if \mathcal{M}_0 does not have missing values, it is possible to average also de BFs.

Result (Ratio of completed-predictive densities)

Under the conditions in the Result about priors for regression models, $\mathfrak{m}_0(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu})$ does not depend on $\boldsymbol{\nu}$, and under the null model this quantity does not depend on $\tilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}$ neither. So,

$$\frac{\mathfrak{m}_{1}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu})}{m_{0}(\widetilde{\boldsymbol{y}})} = \left[\frac{SSE_{0}}{SSE_{0} - \widetilde{\boldsymbol{y}}^{T} \bar{X} (\bar{X}^{T} \bar{X} + V(\boldsymbol{x}_{i} \mid \boldsymbol{\nu})/g)^{-1} \bar{X}^{T} \widetilde{\boldsymbol{y}}}\right]^{(n-1)/2} \times \left|\bar{X}^{T} \bar{X} V(\boldsymbol{x}_{i} \mid \boldsymbol{\nu})^{-1} + 1/g \boldsymbol{I}\right|^{-1/2},$$
(2)

X is the completed design matrix (filled with $\tilde{x}_{(0)}$ and $x_{(1)}$) with columns centered with respect to their mean and SSE_0 is the sum of residuals under \mathcal{M}_0 , I denotes the $p \times p$ identity matrix.

Result (BF example linear regression)

Under the same conditions of the above results and using the priors proposed above, the expression for the BF for M_1 versus M_0 is:

$$B_{10}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}) = \frac{\int \mathfrak{m}_{1}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu}) \prod_{i=m+1}^{n} f(x_{i}^{na} \mid \boldsymbol{\nu}) \pi_{1}(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}) d\boldsymbol{x}_{(1)} d\boldsymbol{\nu}}{m_{0}(\widetilde{\boldsymbol{y}})}$$
$$= \int \frac{\mathfrak{m}_{1}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)}, \boldsymbol{\nu})}{m_{0}(\widetilde{\boldsymbol{y}})} \prod_{i=m+1}^{n} f(x_{i}^{na} \mid \boldsymbol{\nu}) \pi_{1}(\boldsymbol{\nu} \mid \widetilde{\boldsymbol{x}}_{(0)}) d\boldsymbol{x}_{(1)} d\boldsymbol{\nu}$$

The previous BF can be approximated as: For j = 1, ..., N:

- \blacksquare Step 1: Draw $oldsymbol{
 u}^{(j)} \sim \pi(oldsymbol{
 u} \mid \widetilde{oldsymbol{x}}_{(0)})$,
- Step 2: draw $({m x}_{(1)})^{(j)} \sim f({m x}_{(1)} \mid \widetilde{{m x}}_{(0)}, {m
 u}^{(j)})$,
- Step 3: compute the ratio $r_{10}^j = \frac{\mathfrak{m}_1(\widetilde{\boldsymbol{y}}|\widetilde{\boldsymbol{x}}_{(0)},(\boldsymbol{x}_{(1)})^{(j)},\boldsymbol{\nu}^{(j)})}{m_0(\widetilde{\boldsymbol{y}})}$ given in equation (2).

Approximate

$$B_{10}(\widetilde{\boldsymbol{y}},\widetilde{\boldsymbol{x}}_{(0)}) \approx N^{-1} \sum_{i=1}^{N} r_{10}^{j}$$

• Finally, for the comparison of the two hypothesis in the example, using $P(H_0) = P(H_1) = 1/2$, the posterior probability for H_1 is:

$$P(H_1 \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}) = \frac{B_{10}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}{1 + B_{10}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}$$

• Finally, for the comparison of the two hypothesis in the example, using $P(H_0) = P(H_1) = 1/2$, the posterior probability for H_1 is:

$$P(H_1 \mid \widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)}) = \frac{B_{10}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}{1 + B_{10}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})}$$

However, in the *Biometrics* paper (2005), in any imputed data, $P(H_1 | \tilde{y}, \tilde{x}_{(0)}, (x_{(1)})^{(j)})$ is calculated, and the final posterior probability for H_1 is obtained as a mean:

$$\frac{1}{N}\sum_{j=1}^{N} P(H_1 \mid \tilde{y}, \tilde{x}_{(0)}, (x_{(1)})^{(j)}) = \frac{1}{N}\sum_{j=1}^{N} \frac{BF^j}{1 + BF^j}$$

■ Not admissible because of Jensen's inequality.

Simulated example

Example (Simple linear regression)

• We have simulated from:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N_2 \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & \rho^* \\ \rho^* & 1 \end{pmatrix} \right), \quad Y \mid X_1 = x_1, X_2 = x_2 \sim N_1 (1 + \beta_1^* x_1 + \beta_2^* x_2, 1),$$

with ρ^*, β_1^* and β_2^* are prefixed values used to reproduce several real scenarios.

- The complete simulated data D consist on n = 100 draws from Z.
- Interest: whether X_1 is a explanatory variable for Y:

$$H_0 : f_0(y \mid x_1, x_2, \beta_0, \sigma) = N(y \mid \beta_0, \sigma^2), H_1 : f_1(y \mid x_1, x_2, \beta_0, \beta, \sigma) = N(y \mid \beta_0 + \beta_1 x_1, \sigma^2).$$

- If D would be completely observed, the Bayesian answer is the posterior probability $p(\mathcal{M}_1 \mid D)$. This is the oracle response.
- We simulate a MAR mechanism for a proportion π in X_1 , obtaining $(\boldsymbol{y}, \tilde{\boldsymbol{x}}_{(0)})$.

Example (Simple linear regression)

Consider 3 scenarios:

- **E1:** $\beta_1^* = 0.3, \beta_2^* = 0,$
- **E2:** $\beta_1^* = \beta_2^* = 0$,
- **E3:** $\beta_1^* = 0, \beta_2^* = 0.3.$

For each scenario N = 100 datasets are generated for the combinations:

- $\bullet \ \rho^* \in \{0, 0.4, 0.7, 0.9\}$
- $\blacksquare \ \pi \in \{0.05, 0.15, 0.40, 0.60, 0.75\}$

Strength of signal in favour of \mathcal{M}_1 in each of the scenarios

Example (Simple linear regression)

Integrating out X_2 in the data generative process,

$$Y \mid X_1 = x_1 \sim N_1 (1 + \beta_2^* (2 - \rho^*) + (\beta_1^* + \rho^* \beta_2^*) x_1, 1 + (\beta_2^*)^2 (1 - (\rho^*)^2)).$$

The ratio of the signal to the standard deviation is;

$$S^{2} = \frac{(\beta_{1}^{*} + \rho^{*}\beta_{2}^{*})^{2}}{1 + (\beta_{2}^{*})^{2}(1 - (\rho^{*})^{2})}.$$

Summarized in the considered scenarios:

Results comparing Imputation with Remove

Results Imputation vs Remove. Probabilities Exp 1

Results Imputation vs Remove. Probabilities Exp 2

Results Imputation vs Remove. Probabilities Exp 3

Results comparing Imputation with Mean probabilities

Results Imputation vs Mean Prob. Exp 1

Results Imputation vs Mean Prob. Exp 2

Results Imputation vs Mean Prob. Exp 3

- $m_{\gamma}(\widetilde{\boldsymbol{y}}, \widetilde{\boldsymbol{x}}_{(0)})$: always an average of marginals obtained on imputed values: $m_{\gamma}(\widetilde{\boldsymbol{y}} \mid \widetilde{\boldsymbol{x}}_{(0)}, \boldsymbol{x}_{(1)})$, over the posterior predictive $\boldsymbol{x}_{(1)} \mid \widetilde{\boldsymbol{x}}_{(0)}$.
- Bayes factors: sometimes an average of BFs calculated in imputed data, in the sense of the MI word. Not longer true when M₀ has also missing values.
- Posterior probabilities: never an average of posterior probabilities calculated in imputed data.

- Study characteristics as predictive matching criteria and others in the predictive marginals obtained with the proposal priors.
- Analyze and develop the variable selection problem in the context of comparing a set of possible models.
- Analyze how to search in the space of all models when *p* (number of covariates is large) with missing data and exhaustive calculations are not possible.

Thanks for the attention! *****

[‡]Grant PID2019-104790GB-I00 funded by

- Bayarri, M. J., J. O. Berger, A. Forte, and G. García-Donato (2012). Criteria for Bayesian model choice with application to variable selection. *The Annals of Statistics*.
- Fernández, C., E. Ley, and M. F. Steel (2001). Benchmark priors for Bayesian model averaging. *Journal of Econometrics*.
- Hoijtink H., Gu, X., Mulder, J. and Rosseel, Y. (2019). Computing Bayes Factors from Data with Missing Values, *Psychological Methods*.
- Liang, F., R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger (2008). Mixtures of g-priors for Bayesian variable selection. *Journal of the American Statistical Association*.
- Little, R. and D. Rubin (2020). Statistical Analysis with Missing Data (3rd ed.). Wiley
- Yang, X., Belin, T. R. and Boscardin, W. J. (2005). Imputation and Variable Selection in Linear Regression Models with Missing Covariates. *Biometrics*.
- Zellner, A. and A. Siow (1980). Posterior odds for selected regression hypotheses. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith (Eds.), *Bayesian Statistics*