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Model selection in presence of missing data

Consider a random sample zi = (yi, x1,i, . . . , xp,i), i = 1, . . . n.

Interested in: y | x1, . . . ,xp,

Several competing regression models (indexed by γ ∈ Γ),

Mγ : y | x1, . . . ,xp ∼ fγ(y | x1, . . . ,xp,θ0,θγ).

Only zi with i ∈ iobs = {i1, . . . , im} are fully observed (first m components) due to
reasons independent of fγ (Missing At Random scenario)

Dobs denotes all observed components.

In this context...

How to make model selection?

How to measure model uncertainty: di�erent models a�ected by a di�erent set of
missing data?
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How practitioners do?

From a non-Bayesian point of view: case-deletion or complete-case strategies applying
step-wise selection with AIC or BIC, or other tests;

Bad approaches: they sacrifice useful information producing bias results, except perhaps
for particular cases as Missing Completely At Random (MCAR).

Within the multiple imputation (MI) approach, proposed by Rubin (1987), what we call
MI world, traditional non-Bayesian variable selection tools are di�icult to be applied.
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Model selection with missing data: Bayesian perspective

MI world apply statistical techniques to MI data-sets, there are two proposals in
literature:

The Biometrics paper by Yang, Belin and Moscardin (2005)∗, a first a�empt to make
imputation and Bayesian variable selection in linear regression models.

I Intuitively, they propose a way to obtain the posterior probability for each possible model
in each imputed data set, and averaging posterior probabilities for each model over the MI
data-sets.

A recent paper by Hoijtink, Gu, Mulder and Rosseel, 2019, discusses how to compute
Bayes Factors (BFs) doing MI for hypothesis testing in Psychology. †

I To average BFs approximating marginal distributions from Gibbs output over the imputed
data sets.

∗Imputation and Variable Selection in Linear Regression Models with Missing Covariates, 2005, Biometrics.
†Computing Bayes factors from data with missing values, 2019, Psychol Methods
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In this work

Revisit all concepts that appear in model selection/model uncertainty obtaining their
formulation in presence of missing data;

The basic ingredient for model uncertainty quantification (MUQ) is the predictive
density in the observed data,

m(Dobs) =

∫
f(Dobs | θ) dΠ(θ) =

∫
f(Dobs, Dna | θ) dDna π(θ)dθ,

where Dna denotes the missing components in zi, with i ∈ m+ 1,m+ 2, . . . , n.
(Dobs denotes all the components of z observed).
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Outline

1 Motivation about model selection with missing data

2 Regression models. Full observed data

3 Regression models. Missing data

4 Computing marginals with missing data
Prior distributions
Bayes Factors
Posterior probabilities

5 Simulated example
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Full observed data

The entertained regression models may di�er in a number of ways:
1. Set of covariates needed to explain Y or,
2. Density assumed for the errors in linear models.

Notation:
I θ0 parameters appearing in all competing models;
I θγ specific parameter inMγ ;
I A more precise labelling for the parameters of Mγ is

(
(θ0)γ ,θγ

)
, we abuse notation

considering
(
θ0,θγ

)
.
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Full observed data: Designed experiments

In designed experiments, the marginal distribution is obtained “conditional” on the
values of covariates:

mγ(y | x1, . . . ,xp) =

∫
fγ(y | x1, . . . ,xp,θ0,θγ)πγ(θ0,θγ | x1, . . . ,xp)dθ0dθγ

Usual prior distributions over θγ : Zellner–Siow priors, robust priors, hyper-g-priors, etc,
use a conditional variance that depends on xi, i = 1, . . . , p.

This is legitimate as the xi are fixed covariates designed for the experiment.

7 46



Full observed data. Observational Studies

Covariates are random: compare models in the basis of how they predict all observed
values.

Introducing the idea of competing models as joint statistical models:

Mγ : y,x1, . . . ,xp ∼ fγ(y | x1, . . . ,xp,θ0,θγ)f(x1, . . . ,xp | ν).

The marginal density:

mγ(y,x1, . . . ,xp) =∫
fγ(y | x1, . . . ,xp,θ0,θγ) f(x1, . . . ,xp | ν)πγ(θ0,θγ ,ν)dθ0dθγ dν.
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Full observed data. Observational Studies (cont.)

Assuming prior independence: πγ(θ0,θγ ,ν) = πγ(θ0,θγ)π(ν), then

mγ(y,x1, . . . ,xp) =∫
f(x1, . . . ,xp | ν)π(ν)dν︸ ︷︷ ︸

m(x1,...,xp)

×
∫
fγ(y | x1, . . . ,xp,θ0,θγ)πγ(θ0,θγ)dθ0dθγ .

First factor is independent of the model and would cancel in the BF.
The distribution f(x1, . . . ,xp | ν) is negligible→ identical results that in the fixed
covariates case.
Justification of the no discussion about the fixed or random covariates: it does not a�ect
results...

First message

But... πγ(θ0,θγ) cannot depend on x1, . . . ,xp, invalidating the most popular priors: g-prior,
Zellner-Ziow prior, hyper-g prior, robust prior, etc.
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Missing data. Notation

Missing values only in covariates. Not missing values in y.

Tilde symbol used to represent a realization of a random or vector variable. ỹ is a
realization of the random vector y.

Consider a n× p binary matrix M = (mij),

with mij = 1 when xij is missing.

M is a random matrix entering into the competing models, so eachMγ is:

y,x1, . . . ,xp,M ∼ fγ(y | x1, . . . ,xp,θ0,θγ)f(x1, . . . ,xp | ν) f(M | y,x1, . . . ,xp,ψ).

Missingness→ only certain values of the covariates are observed: x̃(0), i.e.
x̃(0) = {x̃ij : m̃ij = 0}.
Rest of components of covariates are random, denoted as x(1).
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Missing at random (MAR) mechanism

Di�erent mechanisms assumed to represent the missingness structure (described in
Li�le and Rubin, 2020).

Consider Missing at Random, (MAR) mechanism, the weakest condition to avoid
specifying the probability distribution of M ;

Missing data are MAR for an observed data (M̃, ỹ, x̃(0)) if

f(M̃ | ỹ, x̃(0),x(1),ψ) = f(M̃ | ỹ, x̃(0),x
?
(1),ψ), for any x(1) 6= x?(1)

Abbreviated: f(M̃ | ỹ, x̃(0),x(1),ψ) does not depend on x(1).
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Joint prior predictive marginal with missing data

Join prior predictive marginal:

mγ(ỹ, x̃(0), M̃) =

∫
mγ(ỹ, x̃(0),x(1), M̃)dx(1)

=

∫
fγ(ỹ, x̃(0),x(1), M̃ | θ0,θγ ,ν,ψ)πγ(θ0,θγ ,ν,ψ)dθ0dθγ dνdψdx(1)

=

∫ [
fγ(ỹ | x̃(0),x(1),θ0,θγ)f(x̃(0),x(1) | ν)f(M̃ | ỹ, x̃(0),x(1),ψ)

× πγ(θ0,θγ ,ν,ψ)dθ0dθγ dνdψdx(1)

]
Using the MAR assumption and considering independence between parameters
governing the missing mechanism and the rest: πγ(ψ | θ0,θγ ,ν) = π(ψ) (we call these
MU-ignorable condition).
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Prior predictive marginal under MAR

mγ(ỹ, x̃(0), M̃) = mγ(ỹ, x̃(0))

∫
f(M̃ | ỹ, x̃(0),ψ)π(ψ)dψ

where

mγ(ỹ, x̃(0)) =

∫
fγ(ỹ | x̃(0),x(1),θ0,θγ) f(x̃(0),x(1) | ν)πγ(θ0,θγ ,ν)dθ0dθγ dνdx(1).

In the above equation (in pink), the second factor does not depend on γ → cancel out in
the BFs.
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Computing marginals with missing data

Under the MU-ignorable condition, and considering conditional prior independence:
πγ(θ0,θγ ,ν) = πγ(θ0,θγ | ν)πγ(ν).
The marginal prior of interest is:

mγ(ỹ, x̃(0)) =

∫
fγ(ỹ, x̃(0),x(1) | θ0,θγ ,ν)πγ(θ0,θγ ,ν) dx(1) d(θ0,θγ ,ν)

=

∫ [ ∫
fγ(ỹ | x̃(0),x(1),θ0,θγ)πγ(θ0,θγ | ν)d(θ0,θγ)︸ ︷︷ ︸

mγ(ỹ|x̃(0),x(1),ν)

× f(x̃(0),x(1) | ν)πγ(ν) dx(1)dν
]

=

∫
mγ(ỹ | x̃(0),x(1),ν) f(x̃(0),x(1) | ν)πγ(ν) dx(1) dν

=

∫
mγ(ỹ | x̃(0),x(1),ν) f(x(1) | x̃(0),ν)f(x̃(0) | ν)πγ(ν) dx(1) dν

= mγ(x̃(0))

∫
mγ(ỹ | x̃(0),x(1),ν) f(x(1) | x̃(0),ν)πγ(ν | x̃(0)) dx(1) dν
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Marginal approximation via simulation

If mγ(ỹ | x̃(0),x(1),ν) can be easily evaluated, then mγ(ỹ, x̃(0)) can be approximated by
simulation:

For j = 1, . . . , N:

1 : Draw ν(j) ∼ πγ(ν | x̃(0)),

2 : draw (x(1))
(j) ∼ f(x(1) | x̃(0),ν

(j)),

3 : compute m(j) = mγ(ỹ | x̃(0), (x(1))
(j),ν(j)),

Approximate
̂mγ(ỹ, x̃(0)) = N−1

∑
m(j)

Steps 1 and 2 are doing with an augmented Gibbs scheme.
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Example

Example (Simple linear regression)

Our data contains observations from three variables (y, x1, x2) ∈ IR3.

Two competing regression models, explaining Y :

H0 : f0(y | x1, x2, β0, σ) = N(y | β0, σ2),
H1 : f1(y | x1, x2, β0, β, σ) = N(y | β0 + β1x1, σ

2).

Γ = {0, 1}, variable x2 is is not relevant for this model uncertainty problem, but it will
be for making imputation.

Here θ0 = (β0, σ) are common parameters for both regression models, while θγ = β1 is
specific toM1.

16 46



Prior distributions considered

Objective or non-informative se�ing.
Adaptation of well-known practices in the model uncertainty literature to the missing
data problems.
Prior forMγ :

πγ(θ0,θγ ,ν) = πγ(θ0,θγ | ν)πγ(ν) = πγ(θγ | ν,θ0)πγ(θ0 | ν)πγ(ν).

Definition (Prior scheme recommended)

πγ(θ0,θγ | ν) = π(θ0)πγ(θγ | ν,θ0), πγ(ν) = π(ν), (1)

where πγ(θγ | ν,θ0) is proper and depends on ν and π(ν) and/or π(θ0) are potentially
improper.
For models that only have common parameters, (1) should be understood as:

πγ(θ0 | ν) = π(θ0), πγ(ν) = π(ν).
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Prior distributions considered (cont.)

For the priors defined above, mγ(x̃(0)) is independent of γ and

mγ(y, x̃(0)) = m(x̃(0))

∫
mγ(y | x̃(0),x(1),ν) f(x(1) | x̃(0),ν)π(ν | x̃(0)) dx(1) dν,

→m(x̃(0)) cancels in the BFs. as it appears in all models.

About πγ(ν)
I Contributes to mγ(y, x̃(0)) through πγ(ν | x̃(0)), under weak conditions this is a proper

distribution.
I It can be used an improper prior.
I The meaning of ν does not change with Mγ , f(x | ν) is independent of γ → same πγ(ν) for

every modelMγ .

18 46



Prior distributions considered (cont.)

For the priors defined above, mγ(x̃(0)) is independent of γ and

mγ(y, x̃(0)) = m(x̃(0))

∫
mγ(y | x̃(0),x(1),ν) f(x(1) | x̃(0),ν)π(ν | x̃(0)) dx(1) dν,

→m(x̃(0)) cancels in the BFs. as it appears in all models.

About πγ(ν)
I Contributes to mγ(y, x̃(0)) through πγ(ν | x̃(0)), under weak conditions this is a proper

distribution.
I It can be used an improper prior.
I The meaning of ν does not change with Mγ , f(x | ν) is independent of γ → same πγ(ν) for

every modelMγ .
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Example (Simple linear regression (cont.))

Consider X = X1 a continuous regressor and assume X iid∼N(µx, σ
2
x), so ν = (µx, σx).

The priors to assign can be expressed: π0(β0, σ, ν) = π0(β0, σ | µx, σx)π0(µx, σx), and

π1(β1, β0, σ, ν) = π1(β0, σ | µx, σx)π1(β1 | β0, σ, µx, σx)π1(µx, σx)

The reference prior for X model is π(µx, σx) = σ−1x , we consider:
π0(µx, σx) = π1(µx, σx) = σ−1x .
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About πγ(θ0 | ν)

Consider a non-informative prior as θ0 are common parameters.

Reasonable when θ0 have a similar interpretation in all models, in this case we should
use an objective estimation prior.

Example (Simple linear regression (cont.))

Common parameters are: θ0 = (β0, σ).

UnderM0, β0 represents the mean of all y, under M1 it is the mean of y | x = 0. Since
x has mean µx the meaning of both β0 can be very di�erent.

To achieve similar meaning,→ a reparametrization underM1: β∗0 = β0 + βµx then
yi | xi ∼ N(β∗0 + β(xi − µx), σ2).

Now the prior over common parameters is:

π0(β0, σ | ν) = σ−1 and π∗1(β∗0 , σ | ν) = σ−1
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About πγ(θγ | ν)

The most delicate ingredient in the prior assignment.

Enters into the equation for the mγ(·) in a multiplicative-way. Not possible to use an
improper prior, its indeterminate constant will be transferred to the marginal, it will not
cancel in the BF calculation (di�erent for eachMγ).

The prior πγ(θγ | ν) has to be proper.

For full observed data, and within the g-prior approach:

θγ ∼ Np(0,V γ),

with V γ obtained from the expected Fisher information matrix underMγ

Many popular proposals in the literature are generalizations of this basic idea: For
normal linear models, Benchmark priors (Fernandez et al., 2001), hyper-g priors (Liang et
al., 2008); robust prior (Bayarri et al., 2012); etc.
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Which V γ with missing data?

Revisiting the original definition of Vγ in the problem of regression.

Consider θ0 = (β0, σ) and θγ ≡ βγ ,

Definition of the prior covariance matrix in the Zellner and Siow, (1980) proposal is

Vγ = n
(
I(β0)/I(β0,βγ)

)−1
n times the Schur complement of I(β0) in I(β0,βγ), the Fisher information matrix for
(β0,βγ).

Equal to using the variance matrix of the m.l.e. of βγ (Bayarri et al., 2012)

In normal linear models, with full-observed fixed design matrix it is:

Vγ = nσ2 (X̄T
γ X̄γ)−1, with X̄γ made by columns centered around the mean.
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Analogous result in our setting

Result (Variance matrix)

Suppose zi = (yi,xi) ∼Mγ where

(yi,xi)
iid∼N(yi | β0 + xTi βγ , σ

2) f(xi | ν),

then, provided f has at least the first two moments:

n−1
(
I(β0)/I(β0, βγ)

)
=

1

σ2
V (xi | ν)

where V (xi | ν) = E[(xi − E(xi | ν))T (xi − E(xi | ν))] with expectations respect to
f(xi | ν).
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Prior over βγ

Our proposal to incorporate the g-priors into the missing context is consider:

βγ | ν, β0, σ ∼ N(0, σ2 V (xi | ν)−1)

Or with flat-tailed alternatives:

βγ | ν, β0, σ ∼
∫
N(0, g σ2 V (xi | ν)−1)π(g) dg.

Di�erent π(g) leads to di�erent well known priors for model selection.

V (xi | ν) is a completely valid component of the conditional (on ν) prior covariance
matrix.

In fact, this prior is even more Bayesian than the g-prior as it does not depend on n nor
on the data x.
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Full specification of priors

Result (Priors in linear regression)

To compare H1 ≡Mγ : (yi,xi)
iid∼N(yi | β0 + xTi βγ , σ

2) f(xi | ν) versus the null model
(only intercept), the priors under each hypothesis are:

π0(β0, σ,ν) = σ−1πN (ν),

π1(β0, σ,βγ ,ν) = σ−1N(βγ | 0, gσ2 V (xi | ν)−1)πN (ν)

with g = 1, (or flat-tailed versions, g ∼ π(g)) where πN (ν) is an appropriate objective prior for
ν in relation to f(xi | ν)
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Example (Simple linear regression (cont.))

X
iid∼N(µx, σ

2
x), so ν = (µx, σx), in this case V (xi | ν) = σ2x, then:

π1(β | β0, σ, σx, µx) = N(β | 0, σ
2

σ2x
).

With the parameterized version ofM1 to define a common prior over θ0,

Using the previous result to obtain the prior in this parameterization:

n−1
(
I(β∗0)/I(β0, βγ)

)
=

1

σ2
V (xi − µx | ν) =

1

σ2
V (xi | ν),

in the simple regression example: π∗1(β | β∗0 , σ, σx, µx) = N(β | 0, σ2

σ2
x
).

Then, π0(β0, σ, µx, σx) = (σσx)−1 and forM∗1:
π∗1(β∗0 , σ, β, µx, σx) = (σσx)−1N(β | 0, σ2

σ2
x
).

Same priors in terms of the original problemM0 vs.M1 (associated Jacobian is 1).
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Bayes factor calculation

The Bayes factor ofMγ toM0 is obtained as:

Bγ =
mγ(ỹ, x̃(0))

m0(ỹ, x̃(0))
,

In general scenarios, with missing values also in the null model, the previous BF can be
approximated as ratio of the approximated marginals:

B̂γ =
̂mγ(ỹ, x̃(0))

̂m0(ỹ, x̃(0))

In some cases, i.e. ifM0 does not have missing values, it is possible to average also de
BFs.
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Ratio of predictive densities regression modell

Result (Ratio of completed-predictive densities)

Under the conditions in the Result about priors for regression models, m0(y | x̃(0),x(1),ν) does
not depend on ν , and under the null model this quantity does not depend on x̃(0),x(1) neither.
So,

m1(ỹ | x̃(0),x(1),ν)

m0(ỹ)
=

[ SSE0

SSE0 − ỹT X̄
(
X̄T X̄ + V (xi | ν)/g

)−1
X̄T ỹ

](n−1)/2
×

∣∣∣X̄T X̄ V (xi | ν)−1 + 1/g I
∣∣∣−1/2, (2)

X̄ is the completed design matrix (filled with x̃(0) and x(1)) with columns centered with respect
to their mean and SSE0 is the sum of residuals underM0, I denotes the p× p identity matrix.
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BFs for the linear regression model

Result (BF example linear regression)

Under the same conditions of the above results and using the priors proposed above, the
expression for the BF forM1 versusM0 is:

B10(ỹ, x̃(0)) =

∫
m1(ỹ | x̃(0),x(1),ν)

∏n
i=m+1 f(xnai | ν)π1(ν | x̃(0))dx(1) dν

m0(ỹ)

=

∫
m1(ỹ | x̃(0),x(1),ν)

m0(ỹ)

n∏
i=m+1

f(xnai | ν)π1(ν | x̃(0))dx(1) dν
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Monte Carlo approximation of the BF

The previous BF can be approximated as:
For j = 1, . . . , N :

Step 1: Draw ν(j) ∼ π(ν | x̃(0)),

Step 2: draw (x(1))
(j) ∼ f(x(1) | x̃(0),ν

(j)),

Step 3: compute the ratio rj10 =
m1(ỹ|x̃(0),(x(1))

(j),ν(j))

m0(ỹ)
given in equation

(2).

Approximate

B10(ỹ, x̃(0)) ≈ N−1
N∑
i=1

rj10
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Approximating posterior probabilities

Finally, for the comparison of the two hypothesis in the example, using
P (H0) = P (H1) = 1/2, the posterior probability for H1 is:

P (H1 | ỹ, x̃(0)) =
B10(ỹ, x̃(0))

1 +B10(ỹ, x̃(0))

However, in the Biometrics paper (2005), in any imputed data, P (H1 | ỹ, x̃(0), (x(1))
(j))

is calculated, and the final posterior probability for H1 is obtained as a mean:

1

N

N∑
j=1

P (H1 | ỹ, x̃(0), (x(1))
(j)) =

1

N

N∑
j=1

BF j

1 +BF j

Not admissible because of Jensen’s inequality.
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Approximating posterior probabilities

Finally, for the comparison of the two hypothesis in the example, using
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However, in the Biometrics paper (2005), in any imputed data, P (H1 | ỹ, x̃(0), (x(1))
(j))

is calculated, and the final posterior probability for H1 is obtained as a mean:

1

N
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(j)) =

1

N

N∑
j=1

BF j

1 +BF j

Not admissible because of Jensen’s inequality.
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Simulated example

Example (Simple linear regression)

We have simulated from:( X1

X2

)
∼ N2

(( 1
2

)
,
( 1 ρ∗

ρ∗ 1

))
, Y | X1 = x1, X2 = x2 ∼ N1(1+β∗1x1+β

∗
2x2, 1),

with ρ∗, β∗1 and β∗2 are prefixed values used to reproduce several real scenarios.

The complete simulated data D consist on n = 100 draws from Z .

Interest: whether X1 is a explanatory variable for Y :

H0 : f0(y | x1, x2, β0, σ) = N(y | β0, σ2),
H1 : f1(y | x1, x2, β0, β, σ) = N(y | β0 + β1x1, σ

2).

If D would be completely observed, the Bayesian answer is the posterior probability
p(M1 | D). This is the oracle response.

We simulate a MAR mechanism for a proportion π in X1, obtaining (y, x̃(0)).
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Simulated example

Example (Simple linear regression)

Consider 3 scenarios:

E1: β∗1 = 0.3, β∗2 = 0,

E2: β∗1 = β∗2 = 0,

E3: β∗1 = 0, β∗2 = 0.3.

For each scenario N = 100 datasets are generated for the combinations:

ρ∗ ∈ {0, 0.4, 0.7, 0.9}
π ∈ {0.05, 0.15, 0.40, 0.60, 0.75}
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Strength of signal in favour ofM1 in each of the scenarios

Example (Simple linear regression)

Integrating out X2 in the data generative process,

Y | X1 = x1 ∼ N1(1 + β∗2(2− ρ∗) + (β∗1 + ρ∗β∗2)x1, 1 + (β∗2)2(1− (ρ∗)2)).

The ratio of the signal to the standard deviation is;

S2 =
(β∗1 + ρ∗β∗2)2

1 + (β∗2)2(1− (ρ∗)2)
.

Summarized in the considered scenarios:

ρ∗ = 0 ρ∗ = 0.4 ρ∗ = 0.7 ρ∗ = 0.9

E1 0.32 0.32 0.32 0.32

E2 0 0 0 0
E3 0 0.122 0.212 0.272
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Results comparing Imputation with Remove
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Results Imputation vs Remove. Probabilities Exp 1
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Results Imputation vs Remove. Probabilities Exp 2

0

Remove

0

Imp

0.4

Remove

0.4

Imp

0.7

Remove

0.7

Imp

0.9

Remove

0.9

Imp

0.05
0.15

0.4
0.6

0.75

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.
0

0.
2

0.
5

0.
8

1.
0

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

0.0

0.2

0.5

0.8

1.0

Oracle

M
1 

po
st

er
io

r p
ro

ba
bi

lit
y

10

20

30

40

count

Experiment:  2

37 46



Results Imputation vs Remove. Probabilities Exp 3
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Results comparing Imputation with Mean probabilities
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Results Imputation vs Mean Prob. Exp 1
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Results Imputation vs Mean Prob. Exp 2
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Results Imputation vs Mean Prob. Exp 3
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Comments and remarks

mγ(ỹ, x̃(0)): always an average of marginals obtained on imputed values:
mγ(ỹ | x̃(0),x(1)), over the posterior predictive x(1) | x̃(0).

Bayes factors: sometimes an average of BFs calculated in imputed data, in the sense of
the MI word. Not longer true whenM0 has also missing values.

Posterior probabilities: never an average of posterior probabilities calculated in imputed
data.
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Present/Future work

Study characteristics as predictive matching criteria and others in the predictive
marginals obtained with the proposal priors.

Analyze and develop the variable selection problem in the context of comparing a set of
possible models.

Analyze how to search in the space of all models when p (number of covariates is large)
with missing data and exhaustive calculations are not possible.
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That’s all

Thanks for the a�ention! ‡
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